
Generic Gaze Interaction Events for Web Browsers

Using the Eye Tracker as Input Device

Benjamin Wassermann
Media University Stuttgart

Mobile Media Group
Nobelstraße 10

Stuttgart, Germany
wassermann@hdm-

stuttgart.de

Adrian Hardt
Eberhard Karls University

Tübingen
Wilhelm-Schickard-Institute

Sand 14
Tübingen, Germany

a.hardt@student.uni-
tuebingen.de

Gottfried Zimmermann
Media University Stuttgart

Mobile Media Group
Nobelstraße 10

Stuttgart, Germany
gzimmermann@hdm-

stuttgart.de

ABSTRACT
In the last decade much research has been conducted on an-
alyzing human eye and gaze movements using eye tracking
technology, not only in the fields of neuroscience, psychol-
ogy and marketing, but also in the field of human computer
interaction. However, no flexbile framework exists to inte-
grate eye tracking directly into web applications to easily
create and test new interaction concepts. We have created
a JavaScript library based on the latest HTML5 Web tech-
nology and the jQuery library to close this gap. Facilitated
by HTML5 WebSocket, the browser directly receives gaze
input samples from an eye tracker, generating events that
are similar to those of a mouse input device. Events like
gazeOver/-Out or fixationStart/-End can be attached to any
HTML element in the DOM tree. New custom events de-
rived from the eye tracking data, e.g. blink or read, can
easily be added. Using this library we have successfully
implemented a number of Web applications, allowing the
users to interact with their eyes. This paper also describes
our gaze enabled Web-based eLearning environment. Our
JavaScript library is used within the eLearning environment
to capture and interpret eye gaze events for the purpose to
support users in the acquisition of new knowledge.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Input devices and strategies, In-
teraction styles - gaze; H.5.4 [Hypertext/Hypermedia]:
Architectures, Navigation

General Terms
Human Factors, Design

Keywords
eye tracking, gaze events, gaze based interaction, gaze-enhanced
web, gaze-enhanced eLearning

1. INTRODUCTION
Since the establishment of multi-touch devices in the mass
market the acceptance and experimentation for new interac-
tion designs has grown rapidly [24]. An upcoming approach
is to model events by user intent in interaction (called Indie
UI or former Intentional Events)[3, 4]. These technologies
are envisioned for interacting with applications independent
of input devices, giving the user the opportunity to choose
their preferred input devices or allow people with disabil-
ities to interact with assistive technologies. One of those
technologies could be eye tracking, since it is continuously
improving. In the near future this technology could reach
the mass market, and eye gazing could be used as a means
of user input. Based on this technology, using the gaze as
input information, new interaction concepts are developed.

The ScienceCampus Tübingen [16] by the Knowledge Media
Research Center [7] in Tübingen maintains a research line
on the Design of Interactive Informational Environments. In
the context of the pertaining project Adaptable and Adap-
tive Multimedia Systems, we are interested in new interac-
tion designs that support users in the acquisition of new
knowledge and the pertaining regulation processes. We have
created a dynamic and adaptive learning platform based on
the eLearning Web platform ILIAS [13] and the JavaScript-
library jQuery [20], and have included eye tracking as an
input device for the eLearning environment.

This approach allows us to acquire a user’s eye gaze informa-
tion in real-time that can be used to generate generic (i.e.
not specific to a specific eye tracking device) gaze events,
to analyse the data to deduce more higher-level events or to
derive predictions about the user’s condition, e.g. if the user
is bored or overstrained by the learning content.

Before describing our concept of the generic gaze interaction
events, we will give an overview of related work in the field
of eye tracking technology. After that we will introduce our
framework, enabling us to transfer the gaze data from the
eye tracker to the Web browser, followed by our concept
about gaze interaction events. We will then describe our
eLearning environment, and discuss using eye tracking as
an input device. Finally, we will give a short conclusion and
an outlook on future work.



2. RELATED WORK
Recently, eye tracking technology has grown mature. It has
not only been used for many years for studies in the area of
image scanning [15], eye movement while driving [14], read-
ing [18] and solving arithmetic tasks [27], but also to build
interactive systems using eye tracking as an input device
[9, 10, 26]. Jacob was one of the first in introducing gaze-
based interaction techniques. He discussed gaze interactions
such as object selection, object movement and eye-controlled
scrolling for text [10]. He also described the “Midas Touch”
problem which refers to a user’s need to confirm their actions
in order to interact with objects. To overcome this problem
he introduced dwell-based activation. The gaze of the user
has to remain over an object for a fixed time before it is ac-
tivated. Since this dwell-time has an inherent latency, Jacob
suggested allowing users to confirm their actions instantly
using a keyboard as alternative.

A well-known problem is the accuracy of eye tracker sys-
tems. Jacob, for example, has overcome this problem by us-
ing sufficiently large targets for his experiments. He showed
in his work that the eye can provide a pointing accuracy of
approximately one degree [10]. Ware and Mikaelian [28] con-
ducted studies to analyze different types of selection meth-
ods with eye tracking, also taking target size into account.
Their results showed that eye selection can be faster than
mouse selection, provided that the target has a moderate
size. Since then researchers have come up with many dif-
ferent approaches for solving the problems of selecting and
activating objects, even with low accuracy of the eye track-
ing device.

In classical approaches the eye movement is typically an-
alyzed in terms of fixations and saccades. A fixation is a
longer gaze over informative regions of interest while the
saccades are rapid movements between fixations. Typical
metrics of eye tracking analysis includes fixation or gaze du-
rations, saccadic velocities and amplitudes and transition-
based parameters, e.g. between fixations and regions of in-
terest [23]. By tracing these fixations one can analyze cogni-
tive protocols [21, 22], since it is generally agreed upon that
visual and cognitive processing occur during fixations [11].
However, the determination of fixations is not clear, because
there is space for interpretation about when a fixation starts
and when it ends.

Eye tracking can be used as input device and connected to
an application in two ways: First, by a link between the eye
tracker system and the application, and second by having
the eye tracker emulate the pointing device of the operat-
ing system. In the latter case, the cursor is controlled by
the eye tracker, preventing in some cases the simultaneous
usage of eye tracking and mouse. Drewes [5] addressed this
problem by integrating eye tracking as additional interaction
modality into a Web browser by using a special proxy, thus
creating a powerful experimentation platform. Biedert [2]
used a more flexible approach by embedding a Java applet
to transfer eye movement data from the eye tracker into the
Web browser. Drewes [6] also made first investigations for
integrating eye tracking into eLearning environments. The
eye movements bear more information than simple interac-
tion events, and can therefore support personalization of the
learning content and user interface.

3. FRAMEWORK
The framework consists of a communication adapter be-
tween Web browser and eye tracker as shown in figure 1.
To acquire data from the eye tracker system, a proprietary
communication API is provided. Since the Web browser
does not support proprietary eye tracker APIs, an adapter
is required. This raises the question: Which kind of commu-
nication technology, supported by the Web browser, should
be used to transfer the eye tracker data to the Web browser?

I/O via proprietary 
protocols 

Web Browser with WebSocket support 

iTrack JavaScript API 

 
 
 

iTrackServer 
Generic Eye Tracker API 

I/O via custom protocol 

Eye Tracker Adapter Connector 
 

SMI 
Adapter 

Tobii 
Adapter Etc. 

SMI 
Hardware 

Tobii 
Hardware 

Other 
Hardware 
Software 

Communication API + Adapter Connector 
Other Adapter 

Communication API + Adapter Connector 

Other Adapter 

Websocket Adapter 

Websocket Adapter 

Figure 1: This graphic shows the architecture of our
framework. The Web browser is connected to the
iTrackServer using the Communication API with
the WebSocket Adapter and the custom protocol
to communicate with the iTrackServer. By using
the JavaScript API iTrack, Web applications within
the Web browser can access the data from the eye
tracker. The iTrackServer uses the Generic Eye
Tracker API to communicate with the eye tracker
hardware. Miscellaneous eye tracker hardware can
be used via the Eye Tracker Adapters.

To answer this question we first have to take into account
that we want the eye tracker data in real-time, which im-
plies an active communication from the server to the client
with low latency. A traditional client-server request does
not seem appropriate since a client always has to start a re-
quest to the server before receiving a reply from the server.
There are some existing advanced techniques like reverse
AJAX to circumvent this problem, but the latency is still
quite high. A better solution could be the use of browser
plugins, but this induces high implementation costs when
multiple browsers have to be supported. Another possibility
are embedded objects like flash or Java applets to communi-
cate with external applications. This has been successfully



demonstrated by the Text 2.0 Framework [2]. A drawback
of this solution is the inclusion of alien objects as interme-
diates into the browser, thus limiting the flexibility in terms
of configuration setups and security issues.

Therefore we propose to use HTML5 WebSockets [8] as
communication means between an eye tracker and the Web
browser. One reason for integrating WebSockets into browsers
was to enable direct bidirectional communication between
clients and servers with low latency. Optimal requirements
for the transfer of data between an eye tracker and a browser.
Another benefit is that the WebSocket protocol handles the
security issues of network connections and data transfer.
Since the HTML5 WebSocket API is a new web technology,
it is not supported by old browsers. However, since many
Web browsers are supporting WebSockets in their latest ver-
sion [29], most people will have access to this technology.

An adapter is needed to bridge between the proprietary API
of an eye tracker system and the WebSocket API as shown
in the ITrackServer part of figure 1. Since we have an inter-
process communication or even a network communication,
we need to define a simple custom protocol for transferring
eye movement data and properties from the eye tracker to
the Web browser and vice versa remote commands in or-
der to control the eye tracker from the Web browser. All
data is passed on in the JSON format, because it can be
efficiently parsed by Web browsers and in many program-
ming languages. This protocol has been used as sub proto-
col for the WebSocket API, but it can also be used for any
other communication technology between an application and
the eye tracker. This keeps our approach flexible enough to
adapt for future Web technologies, and allows other appli-
cations to connect to the eye tracker, e.g. by using a TCP
network connection.

Given the custom protocol used as WebSocket sub protocol,
adapters between a Web browser and any eye tracker system
can be implemented. Our reference implementation is able
to mediate between Web browsers and the SMI RED eye
tracking system [25]. It consists of a separate application
called iTrackServer. The iTrackServer was implemented in
C++ and is using modular and object oriented concepts to
easily extend the application by new eye tracker hardware.

4. GAZE INTERACTION EVENTS
Modern Web applications with dynamic user interfaces heav-
ily rely on JavaScript and event driven design. Every HTML
element in the source of a Website can be connected to event
handlers. An event handler is a function that is called if a
specific event is triggered. For example, one can connect a
click handler to a button, so that the handler is called when
the button is clicked with the mouse [17].

Every Web browser supports a standard set of possible events
(with some variations between Web browsers though). They
can be roughly classified into two groups: input events and
system events. The input events are typically composed of
mouse and keyboard interactions, while the system events
are triggered from the Web browser, e.g. when the down-
load of a Website has finished or the focus of an element has
changed.

A mouse is an input device that transfers the movement
of the hand of a user to the computer. Appropriate move-
ments are applied by the computer to the mouse pointer on
the screen. In combination with the mouse buttons, this en-
ables the user to select or activate elements on the screen by
moving the mouse pointer to a specific location and pressing
a mouse button. A similar behavior can be considered for
the eye gaze of a user. The movement of the pupils of the
eyes of a user is recognized by the eye tracker and trans-
formed into the screen position the user is looking at. It
seems reasonable to consider both interactions as congruent
in respect to the cursor movement.

Mouse events are among the most common events occur-
ring in Web browsers, including click, dbclick, mousedown,
mouseup, mouseover, mousemove and mouseout events and
additionally the mouseenter and mouseleave events. The
first four events are triggered if a user pushes a mouse but-
ton. The events mousedown and mouseup allow a more
sophisticated way to recognize click events, e.g. for the sup-
port of Drag & Drop. The remaining events are triggered if
the mouse pointer changes its position. The events mouseen-
ter and mouseleave are separately listed, because they do
not belong to the W3C Standard. We propose to use sim-
ilar events for eye tracking and therefore we have defined
following equivalent movement events: gazeOver, gazeMove,
gazeOut, gazeEnter and gazeLeave. We have also added the
gazeEnter and gazeLeave events for the sake of the Web
developers’ habits.

Despite all the similarities between the mouse input device
and the eye tracker, there are still many fundamental differ-
ences. First, there is a difference in the accuracy between
the two devices. A standard mouse device has a very high
accuracy as opposed to the eye tracker, which is limited by
the hardware used. There are additional factors influencing
the accuracy of the eye tracker. One factor is the calibration
of the system that varies from session to session. Without
a calibration, only gross predictions of the gaze can be de-
rived from the available data. Another problem is the posi-
tion of the user: it changes over time, which also influences
the accuracy of the tracked data. We also have to consider
that the eye tracker produces a continuous stream of eye
data samples, while the mouse device only produces data
if the mouse has really been moved. This results in a con-
tinuous triggering of the gazeMove event and under some
circumstances in a poor performance of Web applications.
Finally, a mouse provides click events. The eye tracker does
not have any immediate counterpart for these interactions.
However, approaches exist, to use eye blinks or gaze fixations
in combination with dwell-time to simulate a click event[10].
We have added fixation events (fixationStart/-End) as more
higher level events that can be derived from the basic gaze
samples to simulate click events.

4.1 Implementation
Since we are able to receive eye tracker data samples from
an eye tracker within the browser in real-time by using the
WebSocket technology, we can use the data to generate in-
teraction and custom events. For accessing the data in the
Web browser we have created the JavaScript library iTrack.
The library is composed of three subparts. First, a commu-
nication interface similar to the one of the iTrackServer has



been created. With this interface JSON messages can be
sent and received via WebSocket.

The second subpart is the eye tracker controller. It can open
a connection to an eye tracker via the communication inter-
face and interpret the custom protocol. Via the protocol
the controller can remotely control the eye tracker, activat-
ing the eye sample streaming or setting custom properties of
the eye tracker. The controller provides an event interface
to connect any function to a basic set of events: eyeUp-
date, fixationStart/-End and propertyChange. The first two
events are triggered when a new eye sample or a detected
fixation from the eye tracker arrives. The remaining event
is triggered if some configuration, state or property of the
eye tracker has changed.

The last subpart is the event engine which generates the ba-
sic set of gaze events: gazeOver, gazeMove, gazeOut, gazeEn-
ter, gazeLeave and fixationStart/-End. The event engine is
connected to the eye tracker controller events and uses the
received data to generate the events on object-level. To re-
duce the implementation overhead and to be cross-browser
compatible, the event system of the jQuery JavaScript li-
brary was used to realize the generic eye tracker events.
Thus we can easily trigger these events on any element in
the DOM tree. The event handling is the same procedure
as for all other native browser events using the jQuery event
system.

Since the gaze positions provided by the eye tracker are
global screen coordinates, an additional adaptation is re-
quired if the browser is not running in full screen mode to
convert the eye tracker coordinates to the client coordinates.
After the coordinate adaption is applied, the JavaScript
function elementFromPoint can be used to find the under-
lying element of the given position. Using this process, the
event engine is able to trigger the corresponding gaze events
for the given element.

4.2 Client Coordinate Evaluation

Figure 2: The left picture shows the gaze visualiza-
tion with adapted screen coordinates, the right pic-
ture without. The green rectangle is visualized by
the Web browser in client coordinates and the cir-
cle by the SMI Experiment Center in global screen
coordinates.

To apply the client coordinate adaptation, the screen po-
sition of the client window, containing the content of the
Webpage, has to be known. Until now, no native JavaScript
function exists to acquire this information.To overcome this
problem we used a mouse button click event. The mouse
button click event provides as parameters the click position
as both screen and client coordinates. Combining this infor-
mation with the page offset (for scrolling), we can exactly
compute the screen coordinates of the content window of the
Website.

To evaluate the correctness of the client coordinate adap-
tation, we have visualized the position of the gaze in the
browser and the screen position by using the Experiment
Center tool from the SMI eye tracker system as shown in
figure 2. The experiment has shown that the screen posi-
tion visualized by Experiment Center exactly corresponds
to the client position visualized by the Web browser.

5. ADAPTIVE LEARNING ENVIRONMENT
We have built an adaptive eLearning environment extension
that is based on the open source eLearning platform ILIAS
[13]. This extension allows us to conduct the planned empir-
ical studies within the Adaptable and Adaptive Multimedia
Systems project. The extension is divided into two parts:
The authoring environment for the creation and editing of
the content for the lessons and the learning environment for
the presentation of the created lessons to the learner.

Figure 3: This picture shows the integrated author-
ing environment in ILIAS.

The authoring environment is directly built into the ILIAS
platform. It uses the same concepts for creating and manip-
ulating content as ILIAS for its own content objects. This
reduces the barrier for authors that are familiar with the
ILIAS platform. The authoring environment allows for the
creation of modular lessons or learning units based on text,
image, audio and video media types as shown in figure 3.
A learning unit can contain an arbitrary number of content
objects. Every learning unit additionally contains a set of
properties for customization (e.g. choosing templates or se-
lecting default content). To manage multiple lessons, the in-
tegrated administrative objects of ILIAS, such as categories,
folders and courses, can be used. For exchange between local



systems, import and export functionality has been added.

The learning environment or learning view presents the con-
tent to the user. The layout is subdivided into three parts:

Navigation area Depending on the chosen template and
settings of the author, a linear navigation (see B of
figure 4) and a navigation tree (see A of figure 4) are
displayed.

Content area This area is composed of slots or subareas
where the content objects of the learning unit are dis-
played (see C of figure 4). Depending on the author‘s
settings, different kinds of layout with a varying num-
ber of slots can be chosen.

Media shelf If not deactivated by the author, the media
shelf shows all content objects of a learning unit as
small icons (see D of figure 4). The mouseover event
will show a preview of the content. Using Drag &
Drop technology, an icon can be dragged to any slot
in the content area and dropped to dynamically place
the content into the slot.

Figure 4: This picture shows the learning environ-
ment of the ILIAS plugin. A: Navigation tree; B:
Linear navigation; C: Content area; D: Media shelf

The look and feel of the learning view can be adapted by
templates supplied by authors. The view is implemented as
Web application, dynamically loading the content via AJAX
technology from the server. We have added eye tracker
support by including our iTrack JavaScript library to the
presentation view. Additionally tools for creating areas of
interest within images and the DOM tree have been imple-
mented. In combination with some analytic tools complex
interaction relationships can be easily modeled. Thus the
project can now conduct its psychological experiments, an-
alyzing to what extent the eye tracking can be used to give
the user feedback on relationships between different content
elements, and to provide explicit hints about information
the user may have missed.

6. DISCUSSION
As mentioned ealier, there are justifications for the use of
an eye tracker as an input device, at least for people with

disabilities, because this technology is one of the few that
can enable people with disabilities to interact with the com-
puter. Since the eye tracker technology is currently still
too expensive for the mass market (including most users
with disabilities), the main application area is in (market)
research. However, plans of companies producing an eye
tracker system already exist to prepare this technology for
the mass market by installing small eye tracker systems into
normal notebooks [12, 19]. A further development can be
found in free software that converts low cost hardware (e.g.
Web cam) into eye tracker systems [1]. Unfortunately, the
current low cost eye trackers suffer from low precision, much
worse than the professional systems.

In combination with an eLearning environment, eye track-
ing can certainly offer some benefits [6]. It can be used not
only as an alternative for the mouse input in terms of In-
die UI, but can also provide information about the learning
condition of a user. Such information may include informa-
tion on the cognitive load, boredom or learning progress of
a user. First attempts in this direction are currently being
researched in parallel projects.

7. CONCLUSION AND FUTURE WORK
Using eye tracker systems as input devices provides new
possibilities for the creation of new interaction designs for
applications. Eye tracking can substitute classical point-
ing devices like a mouse to some extent, but also requires
new interaction patterns. In this paper we have presented
a framework that allows us to use an eye tracker system as
input device for Web sites. Thus we can easily create new
Web applications using new interaction design concepts. An
adaptive eLearning environment was developed based on the
eLearning platform ILIAS, including our framework. It is
possible to let the user interact with the eLearning environ-
ment by eyes, and to derive more complex information about
the user by analyzing the eye movement.

We are planning to extend our framework by supporting
other eye tracker systems and adding a filter interface to the
iTrackServer to apply and test different approaches of preci-
sion optimization algorithms for the eye tracker data and to
search for patterns indicating special events. Additionally,
we want to extend the iTrack JavaScript library to support
calibration and validation within the Web browser. No ex-
ternal application for calibration will be required, and re-
calibration within a session can easily be performed without
changing the application. As an additional side effect, the
screen to client coordinate adaptation is not required any-
more, since the eye tracker will be calibrated to the browser
window and not to the whole screen.

In future studies we aim to find patterns and indicators in
the eye tracker data to predict more sophisticated events
like read or search, allowing new interactions, e.g. for auto
scrolling while reading a document. We also plan to use
machine learning techniques to find interaction patterns of
users (also using mouse or keyboard input), which we could
possibly use for user interface adaptations or for predicting
some kind of user state, e.g. boredom or cognitive overload.
Finally, we plan to analyze the usage of eye tracking for
Indie UI.



8. ACKNOWLEDGEMENT
This work has been funded by the ScienceCampus of the
Knowledge Media Research Center Tübingen [16].

References
[1] J. S. Agustin, H. Skovsgaard, E. Mollenbach, M. Barret,

M. Tall, D. W. Hansen, and J. P. Hansen. Evaluation
of a low-cost open-source gaze tracker. In Symposium
on Eye-Tracking Research & Applications, pages 77–80,
New York, 2010. ACM Press.

[2] R. Biedert, G. Buscher, S. Schwarz, M. Möller, A. Den-
gel, and T. Lottermann. The text 2.0 framework. In
Workshop on Eye Gaze in Intelligent Human Machine
Interaction, pages 114–117, New York, 2010. ACM
Press.

[3] M. Cooper. Intentional events working
group charter. http://www.w3.org/2011/08/

intentional-events-charter, Nov. 2011.

[4] M. Cooper. Indie ui working group charter. http://

www.w3.org/2011/11/indie-ui-charter, Feb. 2012.

[5] H. Drewes. Eye Gaze Tracking for Human Computer
Interaction. Doctoral Dissertation, Media Informat-
ics Group, Ludwig-Maximilians-Universität München,
Germany, 2010.

[6] H. Drewes, R. Atterer, and A. Schmidt. Detailed moni-
toring of user’s gaze and interaction to improve future e-
learning. In Conference on Universal access in Human-
Computer Interaction: Ambient Interaction, pages 802–
811, Heidelberg, 2007. Springer-Verlag.

[7] F. Hesse and S. Schwan. Knowledge media research
center. http://www.iwm-kmrc.de/www/en/index.html,
Nov. 2011.

[8] I. Hickson. The websocket api. http://dev.w3.org/

html5/websockets/, Nov. 2011.

[9] T. E. Hutchinson, K. P. White, W. N. Martin, K. C.
Reichert, and L. A. Frey. Human-computer interaction
using eye-gaze input. IEEE Transactions on Systems,
Man, and Cybernetics, 19:1527–1534, 1989.

[10] R. T. K. Jacob. The use of eye movements in human-
computer interaction techniques: what you look at is
what you get. ACM Transactions on Information Sys-
tems (TOIS), 9:152–169, 1991.

[11] M. A. Just and P. A. Carpenter. A theory of reading:
From eye fixations to comprehension. Psychological Re-
view 87, pages 329–354, 1980.

[12] O. Kharif. Eye-tracking technology for the masses.
Bloomberg Businessweek, Mar. 2011.

[13] M. Kunkel. Ilias open source e-learning. http://www.

ilias.de, Nov. 2011.

[14] M. F. Land and D. N. Lee. Where we look when we
steer. Nature, (369):742–744, 1994.

[15] D. Noton and L. Stark. Scanpaths in saccadic eye move-
ments while viewing and recognizing patterns. Vision
Research, 11:929–942, 1971.

[16] S. Pfeiffer. Sciencecampus. http://www.

wissenschaftscampus-tuebingen.de/www/en/index.

html?ref=folder5, Nov. 2011.

[17] T. Pixley. Document object model events. http://www.
w3.org/TR/DOM-Level-2-Events/events.html, Nov.
2011.

[18] K. Rayner. Eye movements and cognitive processes in
reading, visual search, and scene perception. In J. M.
Findlay, R. Walker, & R. W. Kentridge (Eds.), Eye
Movement Research: Mechanisms, Processes, and Ap-
plications, pages 3–21, 1995.

[19] redOrbit.com. Tobii unveils eye-tracking laptops. http:
//www.redorbit.com/news/technology/2004501/

tobii_unveils_eyetracking_laptops/index.html,
Mar. 2011.

[20] J. Resig. jquery. http://jquery.com, Nov. 2011.

[21] D. D. Salvucci. Mapping eye movements to cognitive
processes. Doctoral Dissertation, Department of Com-
puter Science, Carnegie Mellon University, 1999.

[22] D. D. Salvucci and J. R. Anderson. Tracing eye move-
ment protocols with cognitive process models. In Con-
ference of the Cognitive Science Society, pages 923–928,
Hillsdale, N.J., 1998. L. Erlbaum.

[23] D. D. Salvucci and J. H. Goldberg. Identifying fixations
and saccades in eye-tracking protocols. In Symposium
on Eye Tracking Research and Applications, pages 71–
78, New York, 2000. ACM Press.

[24] J. Schöning, A. Krüger, and P. Olivier. Multi-touch
is dead, long live multi-touch. In Workshop on Multi-
touch and Surface Computing, pages 1–5, New York,
2009. ACM Press.

[25] SMI. Red eye tracker. http://www.smivision.

com/en/gaze-and-eye-tracking-systems/products/

red-red250-red-500.html, Nov. 2011.

[26] D. M. Stampe and E. M. Reingold. Selection by look-
ing: A novel computer interface and its application to
psychological research. J. M. Findlay, R. Walker, & R.
W. Kentridge (Eds.), Eye Movement Research: Mech-
anisms, Processes, and Applications, 19:467–478, 1995.

[27] P. Suppes. Eye-movement models for arithmetic and
reading performance. E. Kowler (Ed.), Eye Movements
and their Role in Visual and Cognitive Processes, pages
455–477, 1990.

[28] C. Ware and H. H. Mikaelian. An evaluation of an eye
tracker as a device for computer input. In Conference
on Human Factors in Computing Systems and Graphics
Interface, pages 183–188, New York, 1987. ACM Press.

[29] Wikipedia. Websocket. http://en.wikipedia.org/w/

index.php?title=WebSocket&oldid=459013040, Nov.
2011.


