

Model-Driven Engineering (MDE) and Model-Driven Architecture (MDA) approach for learning scenarios

Pierre Laforcade

email: pierre.laforcade@lium.univ-lemans.fr

website: http://www-lium.univ-lemans.fr/~laforcad/

REDIM Project

(Model Driven Reengineering of Technology Enhanced Learning)
LIUM lab

(Computer Science Laboratory of Le Maine University)

Lyon, 13/06/06 Pierre Laforcade 1

Overview

1. MDE/MDA approach applied to learning scenarios

2. Focus on the (re)design of learning scenarios from a MDE/MDA point of view

3. Summary and ongoing work

Recent trends for the design and runtime of learning scenario

- 'LD'-community overall agreements (UNFOLD meeting)
 - Designers of education: instructional designers and regular teachers
 - ▶ Lack of user-friendly design tools (Users = teachers, training practitioners, ...)
 - Lack of runtime tools
- New initiatives
 - Use of ontologies and semantic web principles and tools
 - Use of learning design patterns
 - Example Collage focusing on the building of collaborative designs

- ▶ Development of Learning Design *Authoring* and *Content Management* Systems
- Development of Learning Design Players
- Moving question
 - From "what is it?" to "who is it for and how can it be put to good use?"

Personal analysis of current EML researches

- 2 categories for EMLs design tools
 - LD-centered propositions
 - New (user-friendly) design facilities as a layer over an IMS-LD core
 - ⇒ Produced models are IMS-LD ones
 - Examples: Collage, etc.
 - Inconvenience: pedagogical expressiveness limited to the LD one
 - LD-compliant propositions
 - IMS-LD independent propositions
 - LD-compliance by « exportation or « save as » services (only level A in practice)
 - Examples: MOT+, CPM
 - Inconveniences:
 - compliance in MOT+ is realized by the adding of LD concepts (marking-based) =>
 MOT+ notation but pedagogical expressiveness of IMS-LD
 - compliance in CPM is limited to CPM activity diagrams and CPM concepts close to the IMS-LD ones
 - → generalization of this second category

New proposal

Application of theories and results from the Model Driven Engineering (MDE) and Model Driven Architecture (MDA) domains

What is MDE/MDA?

- MDE (Model Driven Engineering) idea
 - ▶ A system is developed by refining models starting from higher and moving to lower levels of abstraction until code is generated
 - Refinement is implemented by transformations over models

MDA (Model Driven Architecture) approach (from OMG)

- 3 classes of models
- CIM (Computer Independent Model)
 - · The domain model or enterprise model
 - · Specify what the system is expected to do
 - Use to be out of scope of model transformations because not computer-readable but new trend against this (*Domain Specific Languages*-DSL)
- ▶ PIM (Platform Independent Model)
 - The computerized domain model : computer-readable
 - Independent from specific platforms (EJB, Corba, SQL, etc.)
- ▶ PSM (Platform Specific Model)
 - The PIM with the details of how it will be implemented on a specific platform

Global overview of MDE/MDA applied to scenarios

Domain econario

Denloyed econorio

Models for what?

Models for who?

	Domain Scenario	Abstract scenario	Deployed scenario
	CIM*	PIM*	PSM*
Main objectives	- Guide for the design and the reuse; - Ease the exchanges of learning scenario within a same learning design "community of practice"	- Describe the scenario in a LMS-independent form	- Guide the configuration of the specific LMS or runtime-
Learning theory- dependent	Yes/no	Yes/no (e.g. IMS-LD: independent because of the pedagogical flexibility objective)	Depend on the considered platform
LMS-dependent	Yes/no	no	yes
Public for handling models	Human	Machine	Machine
Examples of dedicated languages	CPM, MOT+	IM S-LD, LDL	The LMS' metamodels (some are given by LMS vendors, others need abstraction and modeling efforts in order to be specified)

Abstract econorio

Position and characteristics of this new approach

- LD point of view (from the [Griffiths et al.,2005] two dimensions axes
 - the approach is or general purp

Roadmap for the possible learning scenario transformations in a mixed MDE-MDR context

MDR: just-another-3-letters-acronym for Model-Driven Re-engineering

- Transformations between 2 different languages
 - ▶ Engineering way: 2, 5, 8
 - ▶ Re-engineering way: 3, 6,9
- Transformations with the same language: 1, 4, 7

Existent works* about learning scenario transformations

* from different French labs

Overview

- 1. MDE approach applied to learning scenarios
 - 1. Recent trends for the design and runtime of learning scenario
 - 2. Personal analysis of current EML researches
 - 3. New proposal
 - 4. What is MDE/MDA?
 - 5. Global overview of MDE/MDA applied to scenarios
 - 6. Position and characteristics of this new approach
 - 7. Roadmap for the possible learning scenario transformations

2. Focus on the (re)design of learning scenarios from a MDE point of view

- 1. Context: the REDiM project
- 2. Why separating domain scenarios (CIM) from abstract ones (PIM)?
- 3. From domain model to abstract one and vice versa
- 4. Example: CPM to IMS-LD
- 5. Example: IMS-LD to UML4LD
- 6. Highlighting abstract and concrete syntaxes aspects of domain and abstract languages
- 3. Summary and ongoing work

Context: the REDiM Project

- General objectives
 - ▶ Re-engineering of TEL (*Technology Enhanced Learning*) driven by the usage analysis
 - Strong interest about the design / analysis / re-engineering of learning scenarios
- Some of the specific objectives
 - 1. Considering "collective design" between various teachers/practitioners
 - 2. Providing them user-friendly languages and tools according to their specific preferences (pedagogical approach, etc.)
 - 3. Providing them facilities for the definition of "observation needs" and "observation means"
 - 4. Providing them facilities for the representation at "knowledge level" of abstract scenario and results from the analysis of users' tracks

Lyon, 13/06/06 Pierre Laforcade 12

Why separating domain scenarios (CIM) from abstract ones (PIM)?

- The CIM focuses on the design → it addresses first Human
 - Design = description semi-formal
 - Learning scenario design at a "knowledge" level → concepts/relations are those of the teachers-designers (specific to their pedagogical approach, to the platform they usually use, etc.)
 - Towards specific teachers/practitioners-adapted languages and user-friendly dedicated tools (community of practice) (similarity with DSL)
- The PIM focuses on the "...abilities" (interoperability (on different LMS), formalization, exchange, reuse, etc.) → it addresses first Machine
 - Design = formal specification (automatic interpretation implies no ambiguities)
 - ► Learning scenario design at an "abstract" level → concepts/relations have to be platform-independent (and are those of a targeted community of teachers-designers)

From domain model to abstract one and vice versa

- Domain to abstract (CIM → PIM)
 - Need of abstraction level (formal LMS-independent level) for reusing, exchanging, etc.
 - Need of playing the scenario by means of PIM-compliant runtime tools
 - Example: CPM to IMS-LD
- Abstract to domain (PIM → CIM)
 - Need of representation at the « knowledge level » (or domain language) of:
 - An abstract scenario → in order to ease the reuse by improving the understanding of the formal scenario
 - A descriptive scenario or some "chunk" of concrete activities (obtained after the analysis of end-users tracks) → in order to ease the re-engineering of the prescriptive scenario in an iterative design process
 - Example: IMS-LD to UML4LD

Example: CPM to IMS-LD

- Transformation details
 - Provided as a service of the CPM design tool
 - CPM activity diagram to LD-XML model
 - Level A hard-coded facility
 - Marking-based imperative transformation

Example: IMS-LD to UML4LD

- Transformation details
 - UML4LD: UML profile dedicated to IMS-LD
 - Level A hard-coded facility
 - Imperative transformation

Lyon, 13/06/06

Pierre Laforcade

16

Highlighting abstract and concrete syntaxes aspects of domain and abstract languages

- Many obstacles for scenarios transformations
 - Abstraction from specific notation
 - Meta-models mapping
 - ▶ Binding (+ visualization for domain languages) towards concrete notation

Example: CPM to IMS-LD transformation

Example: IMS-LD to UML4LD transformation

Summary - Application of MDE-MDA-MDR theory and techniques for the design of learning scenarios

- Interests
 - New trend for EMLs
 - Can improve the providing of dedicated languages and user-friendly design tools for regular teachers/practitioners
 - Support and ease the re-engineering of learning scenarios
 - Main characteristics
 - Model-centered approach → separation of concerns
 - Important role for scenarios transformations
- Transformation obstacles
 - ▶ Abstraction/Binding → Technological obstacles
 - Visualization/Graphical representation
 - Mapping: the hot topic from this new approach
- Ongoing works
 - Pragmatic/Bottom-up process
 - Testing tools and techniques from MDE/MDA research community...
 - ... with reference learning scenario languages and models
 - Experiments with teachers/practitioners
 - Prototypes development

Thank you!

...Any questions?

Lyon, 13/06/06 Pierre Laforcade 21

Transformation obstacles

- Abstraction/Binding
 - Technological obstacles
 - ▶ Learning scenarios deal with various technological space: XML/XSD, UML/MOF, EMF/Ecore, XMI, Java/JMI
- Visualization/Graphical representation
 - ▶ Model element *versus* Representation element
 - Difficulty for automatic positioning of representation element
 - Must go further than simple class-association representation
- Mapping: the hot topic from this new approach
 - Must be carefully tackled
 - Many tools and techniques to test from MDE domain
 - Raises scientific obstacle:
 - The level of pedagogical expressiveness for the domain and abstract languages
 - The level of completeness and pedagogical flexibility claimed by abstract languages

Ongoing work

- Bottom-up process
 - **▶** Testing tools and techniques from MDE/MDA research community...
 - Graphical editors/ model visualizers
 - Transformation languages and tools
 - ... with reference learning scenario languages and models
 - Need for abstract scenario language reference (IMS-LD, LDL, others?)
 - Need for domain scenario language reference (CPM, others ?)